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Abstract

Due to the large increase in computation power, new methods for modelling glass dissolution are becoming
available. We give a short description of two classes of such methods. For each method, we first explain where it is
based on, then we list existing applications in glass dissolution and finally, we discuss what it could provide to glass
dissolution modelling. The first class of models consists of molecular modelling. These are methods with a solid
mathematical basis, like ab initio calculations, molecular dynamics or Monte Carlo simulations. These methods are
complementary, not only to one another but also to existing analytical or geochemical models, which will not become
superfluous. Instead, one method can provide input for another method, either by calculating values or by confirming
its basic assumptions. The second class of models consists of soft computing techniques like neural networks, fuzzy
systems or genetic algorithms. These methods, which can be viewed as complementary to traditional methods, are more
empirically based and can be useful for modelling systems that are ill defined or not completely understood yet. © 2001

Elsevier Science B.V. All rights reserved.

1. Introduction

Reliable predictions of the corrosion behaviour of
glasses in aqueous solutions or in disposal media can
only be obtained by the combination of theoretical
models and experiments. Up to now, almost all models
used for predicting glass dissolution are: (1) analytical
models, (2) geochemical models or (3) a combination of
both. Due to the still increasing computation power in
recent years, new modelling methods have become
available. These methods, which are still barely used for
modelling glass dissolution, will definitely lead to an
enormous increase in what modelling can provide in
understanding and predicting glass dissolution. In this
paper, we will present some of these new modelling
methods. For each method, we will explain: (1) what it
is, (2) existing applications and (3) what it can provide to
glass dissolution modelling.

*Corresponding author. Tel.: +32-14 333 131; fax: +32-14
323 553.
E-mail addresses: maertsen@sckcen.be (M. Aertsens),
dominique.ghaleb@cea.fr (D. Ghaleb).

Before presenting new modelling methods, we briefly
reconsider the existing approaches. Extensive recent re-
views of existing models are given in [1,2]. The first type
consists of analytical models. Existing analytical models
are based on the Grambow rate law [3] and/or diffusion.
The basis of the Grambow rate law is that the glass
dissolution rate is equal to the dissolution rate of the
main glass component, silica. Next, the silica dissolution
rate is supposed to be a linear function of the concen-
tration of dissolved silica in solution so that (1) the rate
is maximal when the silica concentration in solution is
zero and (2) the rate is zero at the so-called ‘silica sat-
uration concentration’. To comply with experiments
according to which the glass dissolution rate is not zero
at silica saturation, one sometimes adds a constant rate
(the so-called final saturation rate) to the Grambow rate
law. In models like Lixiver [4,5] or the Grambow model
[3], the Grambow rate law is combined with the diffusion
of silica through a gel layer. Other models [6,7] join the
Grambow rate law and sodium diffusion. A major ad-
vantage of analytical models is that they allow to make
extrapolations to very long times. A problem is that the
basic assumptions of these models are not always correct
and that the model parameters are often obtained only
by fitting (sometimes there is no independent way to
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measure them). Geochemical models (e.g., [8,9]) take
into account most of the glass components. They de-
scribe glass dissolution as a function of a variable called
‘reaction progress’. The major problem here is to link
this variable with time. Traditional geochemical models
also consider only lowest energy states, so they are not
able to describe kinetics. Now, modern geochemical
codes that are able to handle mixed kinetic and equi-
librium problems exist. Assuming that the necessary
input data are available, these codes can consider pre-
cipitation/dissolution reactions. Expressing the dissolu-
tion rate as a function of time is also impossible in
thermodynamic models (e.g., [10-12]), that make pre-
dictions as a function of glass composition.

How do these models compare with experiments?
Because (1) during glass dissolution several processes
occur simultaneously and (2) the values of (at least)
some model parameters are obtained by fitting, an ex-
periment does not always allow to determine unambig-
uously which model is right. Two models, based on
completely different basic assumptions can both lead to
a good fit of the same dissolution data [1]. This indicates
that one needs to be very careful with the interpretation
of experimental results, which sometimes needs to be
refined. As an illustration, after experiments by Chick
and Pederson [13] there was a consensus that a protec-
tive layer does not develop on the glass surface. How-
ever, some years later, the same experiments for the
same glass but with a higher (glass) surface to (solution)
volume ratio, contradicted this [14]. Similarly, recent
experiments [15-17] contradict the Grambow rate law.
The major (long time) process for glass dissolution
should be diffusion through the gel layer [15], which
should not behave as a protective barrier only in the
initial phase of the glass dissolution. The experimentally
observed restructuring of the gel layer [18,19] can make
it protective after some time. So, the value of macro-
scopic parameters like those of the Grambow rate law or
a diffusion coefficient through the gel may change as a
function of time. Summarising, there is still no complete
consensus on the basic mechanisms of glass dissolution.
Also the validity of the basic assumptions of the existing
analytical models is still uncertain. There is only an
agreement [2] that any model for glass dissolution
should be consistent with transition state theory [20]. In
this paper, we will introduce modelling methods, which
allow testing the basic assumptions of the existing
models. Those modelling methods can also address
structure related factors (like silica condensation [19,21],
a percolation transition [22,23] or the openness of the
glass surface [24]) affecting glass dissolution, which
cannot be taken into account in analytical or geochem-
ical models.

Two classes of new modelling methods for glass
dissolution will be presented. The first class consists of
molecular modelling methods: (1) ab initio calculations,

(2) molecular dynamics and (3) Monte Carlo simula-
tions. These types of methods have a solid mathematical
basis. They try to model the glass dissolution through a
better understanding of the basic mechanism and more
accurate representation of the process. The second class
consists of soft computing methods. These methods are
more empirically based and do not require a full math-
ematical description of the system. As an illustration,
most skilled car drivers handle their car without know-
ing or solving the mathematical equations of car beha-
viour. Examples of such methods are neural networks,
fuzzy systems and genetic algorithms. Soft computing
methods are used for controlling many industrial pro-
cesses (see [25] for some examples), including a nuclear
reactor [26-28]. For some problems (e.g., [29]), soft-
computing methods perform better than ‘hard’ compu-
tations. After the presentation of the new modelling
methods, we explain in our conclusion how they can be
integrated to obtain a better understanding, and possi-
bly real predictive capacity, of glass dissolution.

2. Ab initio calculations
2.1. What is it?

The driving force for all chemical reactions is the
interaction between the atoms in a system. If one knows
the variation of the energy in a system as a function of
the positions of the atoms, one can calculate the forces
on the atoms. Therefore, one must solve Schrodinger’s
time-independent equation

Hy = EY (1)

with H the Hamiltonian, iy the wave function and E the
eigenvalue (energy). In the Born—-Oppenheimer approx-
imation, the positions of the nuclei are fixed and one
looks for the wave functions of the electrons. This ap-
proximation is justified because the mass of an electron
is much lower than a nucleus mass and thus electrons
move faster. In this approximation, the Hamiltonian H
is given by the sum of the kinetic and potential energy of
the electrons as well as the nucleus—nucleus electrostatic
repulsion:

H=T+7V, (2)
2 Nelee ? 2 2

T=——— -
Sthm;(axiz +ay3+az§)’ (3)

Netee  Nnucl 2 NeleeNelee 12
V _ elec nucl Zne elec!Velec e

i=l n=1

Nouel:Nnuel Zn ZPGZ
)

4)

Tin i—to=1 T 15— np

with /s the Planck constant, m the mass of an electron,
(x;,31,2z;) its position, Z, and Z, the dimensionless
charge of nucleus n and p, N, the number of elec-
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trons in the system, N, the number of nuclei in the
system, r;, the distance between electron i and nucleus
n, r; the distance between electron i and electron j and
R,, the distance between nuclei # and p. Solving (1)—(4)
allows calculating the energy E as a function of the
distance R between two nuclei. By knowing E(R) ac-
curately, it is possible to predict the detailed atomic
forces and the chemical behaviour of the system. It is
also possible to carry out a minimisation of the cluster
geometry and to compute the optimal equilibrium ge-
ometry by solving

oF
o 0 (%)

for each of the N, nuclei in the system. Evidently, one
has to check whether the configuration found is a true
minimum by calculating the second derivatives of the
energy E(R). Similarly, one can also calculate the max-
ima and find the activation energy.

The agreement between calculated bond length and
experimental bond lengths for several compounds is
impressive (see Fig. 1). However, one must remain
careful with the interpretation of ab initio results. These
depend on the accuracy used for calculating the wave
function (which is strongly related to the basis set) and
also on (the size of) the configuration, which must be
representative for the bulk or surface structure. Due to
the potential energy operator (4), it is obvious that (at
present) ab initio calculations are possible only for small
clusters of small elements.
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Fig. 1. Comparison of experimentally measured bond lengths
with those calculated by ab initio methods in the basis set MP2/
6-31G* (from [69]).

2.2. Existing applications in glass dissolution

Very relevant for glass dissolution is the ab initio
calculation of the activation energy for breaking Si-O—
Si or Si-O-Al bonds by water, hydrogen or a proton
[30,31]:

Reaction

=Si-O-Si=+ H,0
—=Si-OH +=Si-OH

Activation energy

29 kcal/mol

=Si-O-Al=+H,0
—=Si-OH +=Al-OH

26 kcal/mol

=Si-O-Si=+ H;0"
—=Si-OH +=Si-OH;

24 kcal/mol

=Si-O-Al=+H;0"
—=Si-OH +=Si-OHJ

16 kcal/mol

=Si-O-Si=+OH"
—=Si-OH +=Si-O".

19 kcal/mol

In fact, the final reaction is a two-step process, of
which we have only mentioned the highest activation
energy. These results indicate a catalytic effect of hy-
drogen and a proton on the breaking of Si—-O-Si bonds.
Experimentally, for a borosilicate glass, Knauss et al.
[32] find indeed that the glass dissolution is slowest at
neutral pH. For the R7T7 nuclear glass, Advocat [33]
finds that the dissolution rate is highest at high pH.
Measuring only the pH values larger than 4, he does not
observe an increasing dissolution rate at low pH.

Experiments show that alkalis in solution also have a
rate enhancing effect on the dissolution rate of glass and
quartz [34,35]. Ab initio calculations by Strandh et al.
[36] show at high pH a weakening of the Si—O-Si bond
in the presence of alkalis. The calculations for low pH
do not entirely correspond with experiments, which is
attributed to the choice of the configuration.

At least in some circumstances, diffusion through the
gel is crucial in glass dissolution. This means that also the
structure of the gel (glass) is extremely important. The gel
(glass) contains small pores [37] and the size of these pores
determines how fast elements can diffuse through them
[38,39]. Such pores can be considered as the hole of a ring
formed by glass formers. Tossell and Saghi-Szabo [40]
performed ab initio calculations for such rings of four
tetrahedrally co-ordinated atoms connected by bridging
oxygens. Their results show that the Si- Al - Si- Al con-
figuration is more stable than Si- Si- Al- Al (this is the
Loewenstein rule). However, the incorporation of a pro-
ton or Ca™® makes the Si - Si - Al - Al configuration more
stable than Si- Al - Si- Al. Similar calculations are exe-
cuted for boron instead of aluminium. More specific for
dissolution of sodium aluminosilicate glasses, their cal-
culations show that the reaction of H,O with
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Si,Al,0,,HgNa,, which can be considered as a simple
simulation of ion exchange, does not lead to the hydrolysis
of the Si-O—Al bond. Instead, the water molecule sits near
to the sodium.

2.3. Potential applications for glass dissolution

It is obvious that ab initio calculations alone will
never be able to model the entire glass dissolution pro-
cess. However, they can provide essential input for other
modelling methods and allow additional understanding
of experiments.

An asset of ab initio is its ability to calculate the
catalytic effect. In this way, they could allow, e.g., (1) a
better understanding and modelling of effects of solution
composition (including pH) on the glass dissolution rate,
(2) more accurate estimates of the activation energy for
silica dissolution (up to now the values found in the
literature diverge considerably) or (3) a better under-
standing of the mixed alkali effect. Another application
is in the development of waste packages. Including or
leaving out some components of a package can lead to
much slower dissolution and a better immobilisation of
the waste. Of course, this can be tested by experiments,
but (at least in some years) calculations will be easier
and cheaper. Concerning the link with other modelling
methods, ab initio methods can provide (1) the potential
energy functions used in molecular dynamics or (2) the
activation energies or equilibrium constants needed for
Monte Carlo modelling or (3) equilibrium constants
which can be compared with those in geochemical da-
tabases.

3. Molecular dynamics
3.1. What is it?

Molecular dynamics allows to describe the behaviour
of nanometer-sized volumes of atomic systems by cal-
culating explicitly the trajectories of all the atoms
[41,42].

In any molecular dynamics calculation, the first step
consists of choosing the analytical functions that will be
used to calculate the forces on each of the atoms of the
represented volume. One could use ab initio methods to
calculate these, but mostly one uses standard potentials
from which the parameters are determined by fitting
certain material properties (e.g., structure factor, elastic
constants, etc.). The interaction potentials used for nu-
clear glasses take into account the particular chemical
nature of bonds (ionic and covalent bonds). They are
generally constituted by Born-Mayer-Huggins terms
completed by three body terms [43,44].

Now, it is possible to write explicitly the (classical)
Hamiltonian A of the atomic system:

N 2
b
H:Z +EP01(q17"'7QN) (6)
i=1

2m,'

with n the number of atoms in the system, p; the kinetic
moment of every atom, m; its mass, ¢; its position and
Epot(q1, - - -, qn) the total potential energy.

Solving the classical movement equations

. OoH

_ OH
7= op’

p= oq;’

(7)

where the dot stands for the derivative with respect to
time, allows the trajectory of each atom to be obtained.
The atomic paths are calculated step by step on a time
interval on the order of 100 ps. The choice of this time
step determines the accuracy level of the total energy
configuration. In general, one asks an energy conserva-
tion of about 0.05%. In the case of a constant volume
simulation, the most used algorithm is Verlet’s [45].

Because they do not take into account the electrons
of atoms and often work with two particles potentials
(instead of potential energy surfaces), molecular dy-
namics are less accurate than ab initio calculations. On
the other hand, they allow the time-dependent beha-
viour of systems up to the order of some hundred
thousands of particles to be described.

3.2. Existing applications in glass dissolution

For nuclear waste glasses, molecular dynamics stud-
ies focus on describing the glass structure. The initial
point of any study of long term glass behaviour is to
improve the knowledge on the structure of the glass.
Molecular dynamics is one of the most successful tools
to describe at the atomic level the characteristics of
glasses (structure, some thermodynamic data, etc.) such
as the structural organisation of the basic matrix (cal-
culations with four, five and six oxides) of the French
nuclear waste glass [43,44,46,47]. On a short range, one
can determine the co-ordination of the atoms, their in-
teratomic distances and the angular distributions (see
Fig. 2). The medium range organisation is obtained
from the angular distribution between cations (Si—O-Si,
Si—O-Al, etc.), the distribution of rings of the network
and its polymerisation (number of non-bridging oxy-
gens, average silica co-ordination (connectivity) number
0,). These papers show the particular role of alkalis and
the earth-alkalis in the glass structure [48]. The changes
by irradiation (nucleus recoil) [49-52] of the surrounding
glass structure is also described by molecular dynamics.
Finally, this technique also allows us to determine mi-
gration parameters for mobile atoms (e.g., sodium) [46].
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Fig. 2. Short range structure of a nuclear glass as determined by molecular dynamics [43,44]. The curves represent the radial and
angular distributions. The maximum of each distribution is indicated by a line. About 76% of the boron particles are in the B4—O

coordination. The remaining part (24%) is B;-O.

Concerning the glass dissolution process itself, mo-
lecular dynamics studies on the hydration of silica
glasses already exist for simple glasses [53,54].

3.3. Potential applications for modelling glass dissolution

The major strength of molecular dynamics is its
possibility to model the structure of atomic systems. It is
also a tool to study phenomena with dynamics on the
order of picoseconds.

Due to its ability to describe the glass structure,
molecular dynamics are excellent to study structure re-
lated factors affecting glass dissolution. Examples are:
(1) influence of the glass (gel) structure on the diffusion
of each element (in particular (mixed) alkali diffusion),
(2) the modification, structure and stability of the gel, (3)
the glass structure modification introduced by a surface,
(4) the possible change in dissolution behaviour caused
by the modified glass (gel) structure due to irradiation,
etc.

The potential energy functions used in molecular
dynamics can be related to ab initio calculations as
well as to Monte Carlo methods. Ab initio molecular
dynamic calculations (e.g., Car Parinello calculations
[55]) can permit adjustments to the parameters of the
classical molecular dynamics potentials. Similarly, a
combination of ab initio and molecular dynamics
could form a database of the main mechanisms, their
probability and consequences on the mobility of spe-
cies and the resulting influence on the gel structure.
This database could be used as input for Monte Carlo
models.

4. Monte Carlo simulations
4.1. What is it?

Monte Carlo methods are based on probabilities.
The idea is that by repeating a stochastic process many
times, one gets a clear average. In this way, Monte Carlo
methods can be used, e.g., to calculate numerically
definite integrals.

Another possibility, more relevant for glass dissolu-
tion modelling, is to apply a Monte Carlo method for
solving the mathematics of transition state theory [20].
Consider for instance the simple chemical reaction

A+B— C" — D, (8)
where the reactants A and B are forming the activated
complex C*, which decays to the product D. The reac-
tion kinetics of (8) are described by two parameters, e.g.,
the equilibrium constant and the activation energy.
Those two parameters can be transformed in two
probabilities: (1) a probability Pt to transform a couple
of neighbouring (A, B) particles in a D particle and (2) a
probability P~ for the reverse reaction. The Monte
Carlo method now consists of transforming at every
time step all couples of neighbouring (A, B) particles in
a D particle with probability P*. Simultaneously, all D
particles are transformed in a couple of (A, B) particles
with the probability P~. In this way, one solves the re-
action kinetics in a stochastic way. The result is the same
when one would solve the reaction kinetics analytically.
But, analytical solutions are only available for simple
systems. For complicated systems, with several reactions
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and geometrical constraints, a Monte Carlo method is a
convenient way to solve the mathematics of transition
state theory (see [56] for more details).

Comparing the Monte Carlo method from the pre-
vious paragraph with molecular dynamics, it is clear that
the interaction potential from molecular dynamics is
replaced by some discrete values (probabilities). This is
not necessarily so. It is also possible to perform Monte
Carlo simulations with the full interaction potential, but
that case is more complicated than applying it on dis-
crete lattices. Approximating the amorphous glass
structure by a discrete lattice obviously leads to a de-
crease in accuracy. On the other hand, this also allows
simulations to be performed on larger time scales.
Typically, molecular dynamics perform simulations on
the order of picoseconds. Monte Carlo methods can
obtain results on the order of hours to days.

4.2. Existing applications in glass dissolution

Simulating glass dissolution by a Monte Carlo
method was introduced by Aertsens [56-59]. He divides
all glass components in (1) easily dissolving components
and (2) slowly dissolving, solubility limited components.
For simplicity, he calls the first class of elements sodium
and the second class silica. All the elements (including
water) are supposed to be on a lattice. He chooses a
diamond lattice because it best represents the tetrahedral
co-ordination of silica. The glass structure is approxi-
mated as being a random mixture of silica and sodium.
Initially, the glass water surface is flat. Next, water can
penetrate the glass. Water can exchange places with sites
bearing a sodium particle (according to some probability
P.on) or break silica (in fact Si—-O-Si) bonds. The silica
dissolution reaction is modelled as consisting of four
elementary reactions, where in each elementary reaction
one Si—-O-Si bond is broken. If all Si—-O-Si bonds are
broken, then a silica particle is considered dissolved and
it can diffuse with a probability Py over water bearing
sites. This diffusion goes on until (1) the silica particle
reaches the water solution or (2) it is trapped again by
another silica particle. Since in every elementary reac-
tion a Si—-O-Si bond is broken, it is reasonable to cha-
racterise all these reactions by the same parameters P
and P~ (see previous section). Aertsens performs simu-
lations for a zero (glass) surface to (water) volume ratio,
as well as for non-zero surface to volume ratios. In the
second case, the silica concentration in solution can in-
crease from zero until some maximal level. It is also
important to know that the parameters used in the
simulations can be related to experimental values [58]
and that for simple cases, simulation results can be
compared quantitatively with experiments (see Fig. 3).

The simulations from Aertsens are used to test the
basic assumptions (e.g., congruent dissolution) of ana-
lytical models. For a zero surface to volume ratio and no
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Fig. 3. Comparing the experimentally measured [24] retreat of
the Corning 015 soda lime glass (composition: 72.2% SiO,,
21.4% Na,0, 6.5% CaO, mol%) at 50°C and pH 7 with a Monte
Carlo simulation result (sodium fraction in the glass of 0.25,
Pt =39x%x 107", In(P*/P~) = —6, Pyyy = 1000 P~, Py, = P7).

silica in solution, the simulations show that the disso-
lution of glass is closely related to a percolation transi-
tion. For low sodium contents, sodium cannot leach out
of the glass unless silica dissolves first. So, dissolution is
congruent and slow. For higher sodium contents, con-
nected pathways of sodium exist. So, sodium can leach
out of the glass by these paths which can lead to non-
congruent, faster dissolution with extensive surface lay-
ers. In this case, sodium leaching can go on at silica
saturation. Below the percolation threshold, sodium
leaching stops at silica saturation. The thickness of the
surface layer depends on the sodium content of the glass
(more sodium leads to thicker layers) and on the prob-
abilities P (a higher ratio Pt /P, leads to thinner layers).
On a qualitative level, these simulations agree with the
types of surface layer characterised by Hench and Clark
[60]. Similarly, the profiles of sodium in the gel agree
qualitatively with experimentally measured SIMS pro-
files [56].

The general belief that transition state theory does
not lead to a protective layer formation is contradicted
by the simulations. In simulations with silica saturated
concentrations, dissolved silica from solution is trapped
again by the gel. This leads to an increase of the silica
concentration at the gel/solution interface. These silica
particles partially or completely block the way out for
sodium particles. This result is a lower leach rate in silica
saturated solutions than in solutions containing no sil-
ica. Besides, consistent with experiments [18,19], the
simulations show silica condensation. This means that
more silica bonds need to be broken for dissolution.
Thus, the overall silica dissolution rate should decrease
as a function of time. Again, this is consistent with re-
cent experiments [15], showing that dissolution is slower
for glass that has already leached before. Experiments
[15] and simulations [58] also show that the second
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parameter of the Grambow rate law, the ‘silica satura-
tion concentration’ does not remain constant during
glass dissolution. Thus, it is not surprising that the
simulations do not agree with the Grambow rate law [58].

Other Monte Carlo simulations, similar to those of
Aertsens, are performed by a French group from
Palaiseau [61,62]. Major differences between both
simulation models are that the Palaiseau group: (1)
works on a square or a cubic lattice, (2) uses different
dynamics, (3) allows three kinds of glass components
and (4) does not consider silica diffusion. On a
qualitative level, the simulation results from the Pal-
aiseau group agree in general with those from Aert-
sens. Due to different basic assumptions and
parameter values, there are also limited differences. As
an example, some simulations of Aertsens [58] lead to
silica concentrations higher than the final silica con-
centration, while the Palaiseau group does not report
such behaviour.

A common problem of both the simulations of
Aertsens and Palaiseau is that, especially below the
percolation threshold, at silica saturation, the gel layer
finally rearranges to a state where no ‘sodium’ can leach
out. Experimentally, leaching can go on due to solid
state diffusion or diffusion by small pores [7,37,63]. A
better representation of the glass structure (e.g., different
bond lengths for sodium and silica) could possibly solve
this problem.

Finally, Monte Carlo simulations for glasses are also
performed on a continuum instead of a lattice. Results
of these should be available soon [64].

4.3. Potential applications for modelling glass dissolution

Monte Carlo simulations are a powerful tool to
model glass dissolution on experimentally relevant time
scales. Because Monte Carlo models take a three-di-
mensional (simplified) glass structure into account, they
can describe structure-related phenomena like a perco-
lation transition, phase separation, silica condensation,
the changing size of the microscopic glass surface, the
openness of the structure, etc. None of these phenomena
can be included in a natural way in analytical models.
Monte Carlo methods are also an excellent way to test
the basic assumptions of simpler models (e.g., analytical
models).

The present Monte Carlo models are still too simple,
especially in how they model the glass structure. Besides,
the discussion about how to implement glass dissolution
microscopically is still open. As a result, one must re-
main careful with the interpretation of the simulations.
The major challenge for the existing Monte Carlo
models is to take into account in a more realistic way the
glass structure while still keeping computation times
acceptable.

5. Neural networks
5.1. What is it?

Artificial neural networks are based on how our
brain works. In our brain, a biological neuron consists
of a cell body, which is connected to other neurons by
synapses (see Fig. 4). Electrical pulses coming from
other neurons are transmitted by the synapses to the cell
body. If the sum of these pulses exceeds a certain
threshold, the neuron fires an electric pulse to the other
neurons to which it is connected. An artificial neuron
works in the same way. Its input is the output x; of other
neurons, multiplied by a corresponding weight w;, which
reflects the strength of the connection. These weighted
inputs are then combined, usually by a simple summa-
tion

S = Zwixi. 9)

This summation is further processed by a transfer
function to produce the output of the neuron. Initially,
this transfer function was a step function, but other
functions like the sigmoidal function f(x)=
1/(1 4 exp(—x)) resulted in better performances.

Network of neurons can be constructed in all kinds
of configurations, but usually they are built by a se-
quence of layers, where each layer consists of a number
of neurons which are fully or partly connected to suc-
cessive layers (see Fig. 5). Most neural networks have
two layers with connections to the outside world: an
input layer, where data are submitted to the network,
and an output layer, which presents the response. The
other layers are called hidden layers.

Once the configuration is fixed, the neural net can be
trained. Training can be compared with fitting in con-
ventional models. One presents to the net input and/or
output data. Simultaneously, the weights are changed
according to some ‘learning rules’. The aim is that, after
the training phase, the neural net provides correct an-
swers (output) for a given input. Hereby it is essential
that the network not just memorises the training data,
but that it manages to extract the features of the prob-
lem for which it is trained. To make sure that this is the
case, it is possible to present the neural network data

to other neurons

from other neurons

Fig. 4. A biological neuron (left) and an artificial neuron (right)
(from [25]).
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A\

B\
S\\W/7=

Fig. 5. Neural network architecture for the prediction of stress
corrosion cracking. The input layer (left) consists of three
neurons. The output layer (right) has one neuron.

that are not included in the training set and see that the
output corresponds with the desired one. If this is sat-
isfactory, the network is ready to be used.

As an illustration, we present a specific case [65],
where a neural network is used to predict stress corro-
sion cracking in boiling water nuclear reactors. The
network is learned to recognise the combined effect of
temperature, chloride and oxygen concentration on the
occurrence of stress corrosion cracking. It has three in-
put neurons (see Fig. 5): one for temperature, a second
for chloride concentration and a third for oxygen con-
centration. There is one output neuron. During the
training phase, the output neuron is given a value of one
if stress corrosion occurs for the corresponding input
data. If not, the output neuron has a zero value. For
predictions, the value of the output neuron varies
gradually between zero and one. If the probability for
stress corrosion increases, the value of the output neu-
ron increases as well.

For this particular case, the predictions correspond
well with the input data. During the learning phase,
conflicting input data have been inserted in the network.
Indeed, similar input data sometimes lead to stress
corrosion cracking and sometimes not. It is up to the
neural network to generalise this contradictory infor-
mation in a reliable way. To put it in a simple way, the
neural network provides a kind of fitting without
needing a well-defined fit function. Note also that
(similar to conventional fitting) it remains possible that
other parameters (e.g., the stress level) which are not
taken into account, can also effect stress corrosion
cracking.

5.2. Existing and potential applications for glass dissolu-
tion

We do not know if any existing neural network is
helping to model glass dissolution. But, efforts are going

on to use neural networks for predicting interactions in
cement/waste systems [66,67]. We do not see any reason
why it is not possible to develop a similar program for
interactions in glass/waste systems, where many experi-
mental data for many types of glass are available.

6. Fuzzy systems and genetic algorithms
6.1. What is it?

The basis of fuzzy systems is fuzzy set and fuzzy lo-
gic, in which fuzzy rules are most popular. Assuming
that in nature, change is not sudden but gradual, the
boundary of such rules is not sharp but fuzzy. As a re-
sult, the system output from one rule area to the next
rule area changes gradually. Depending on the area (of
input points) each rule has a weight. The total system
output is calculated by taking the weighted average of
the output of every individual rule. Contrary to tradi-
tional logic, which only considers the values zero (for
false) and one (for true) fuzzy logic uses values between
zero and one. In this way, fuzzy logic allows for a better
description of concepts like large, fast, etc.

Takagi [25] gives a good introduction to genetic
algorithms.

6.2. Existing and potential applications for glass dissolu-
tion

We do not know any existing applications concerning
glass dissolution. Fuzzy systems possibly combined with
genetic algorithms or neural networks are a good alter-
native for modelling systems that are not fully under-
stood yet.

7. Conclusion

Due to the large increase in computation power, new
microscopic modelling methods like ab initio, molecular
dynamics or Monte Carlo simulations, will definitely
enhance the capabilities of modelling. These microscopic
modelling methods are complementary: not only to one
another, but also to the existing analytical and geo-
chemical models. In fact we can view mathematical
models as a kind of hierarchy. On top is a very accurate
method (ab initio) which is however so computationally
expensive, that it can only be used for very few small
elements. Going down the hierarchy to molecular dy-
namics and Monte Carlo simulations, one looses accu-
racy each time. But, simplifications also lead to lower
computation times. This means that one can proceed to
bigger systems and larger times. At the bottom of this
hierarchy are analytical methods. These are the only
ones capable of predictions on very long time scales.
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However, these predictions depend on assumptions that
are not necessarily correct. During glass dissolution,
several processes are going on simultaneously, so ex-
periments cannot always confirm or negate simple basic
assumptions. Therefore, microscopic methods are ex-
tremely helpful; they can test which (or under which
circumstances) assumptions or experimental determined
values make sense. For such things, simulations are
much more versatile, much easier to use and (in the
future) also much cheaper, than experiments. Similarly,
in the just sketched hierarchy, higher level simulation
methods can provide essential information to lower
levels.

Soft computing methods provide a way to model
phenomena that are not completely understood yet. In
this way, they can be combined with hard mathematical
models. Neural networks are a fast way to obtain pre-
dictions. Since these predictions are not based on un-
derstanding the problem, we do not recommend relying
only on them for extrapolations. On the other hand, the
glass dissolution literature shows many examples of fit
functions and models, for which there is no or a ques-
tionable theoretical basis (e.g., the Grambow rate law).
We do not see much reason why such a prediction should
be more reliable for extrapolation than a neural network.

Finally, keeping in mind that despite great advances
in science, predicting the future is still very hard. As an
example, testing five hydrogeological models showed
that all of them failed to accurately predict the future
behaviour of the system [68]. In any field, more reliable
predictions are only possible by a better understanding
of the system. Although they still need improvement, it
is obvious that for glass dissolution microscopic mod-
elling will provide much of this understanding.
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